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Extreme value statistics and return intervals in long-range correlated uniform deviates

N. R. Moloney>l< and J. Davidsen'

Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada AB T2N 1N4

(Received 12 December 2008; published 21 April 2009)

We study extremal statistics and return intervals in stationary long-range correlated sequences for which the
underlying probability density function is bounded and uniform. The extremal statistics we consider (e.g.,
maximum relative to minimum) are such that the reference point from which the maximum is measured is itself
a random quantity. We analytically calculate the limiting distributions for independent and identically distrib-
uted random variables, and use these as a reference point for correlated cases. The distributions are different
from that of the maximum itself (i.e., a Weibull distribution), reflecting the fact that the distribution of the
reference point either dominates over or convolves with the distribution of the maximum. The functional form
of the limiting distributions is unaffected by correlations, although the convergence is slower. We show that our
findings can be directly generalized to a wide class of stochastic processes. We also analyze return interval

distributions, and compare them to recent conjectures of their functional form.
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I. INTRODUCTION

Interest in the extreme behavior of complex systems has
been growing, with examples including the estimation of
DNA replication times [1], extreme paths on random trees
[2,3] and their applications to computer science [4], extreme
eigenvalues in random matrices and low-lying states in dis-
ordered systems [5,6], and extreme values in multifractal
processes [7]. In particular, much attention has been paid to
extreme value statistics in time series. This is especially rel-
evant in the context of disasters and hazard assessment [8],
flood prediction being a notable example [9]. In regard to
this, results exist in the mathematical literature [10] which
extend the range of extreme limit distributions based on
identically and independently distributed (iid) random vari-
ables to a wide class of dependent time series (see [11] for a
review). Yet, the exact extremal properties of many time se-
ries exhibiting long-range correlations are far from being
fully understood. Examples of such time series in nature in-
clude crackling noise [12], water levels in rivers [13], tem-
perature fluctuations in oceans [14], or climatological tem-
perature records [15,16]. Much insight into the extremes of
these time series can be gained by studying so-called 1/f¢
signals [17-19] (in reference to the power-law decay of the
power spectrum), which capture many of the essential fea-
tures of real-world long-range correlated time series.

Aside from the distribution of extremes, another very use-
ful and practical indicator for hazard assessment based on
time series is the distribution of return intervals between suc-
cessive threshold-crossing events. For uncorrelated time se-
ries, the Poisson process gives rise to the well-known expo-
nential return interval distribution [20]. For long-range
correlated series encountered in nature, however, the distri-
bution is no longer exponential and a number of distributions
have been put forward, depending on the data set, such as
gamma distributions and power laws with stretched exponen-
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tial tails [21-25]. Artificially generated 1/f* signals have
been studied in detail [26,27] and some progress has been
made toward a theoretical understanding of return intervals
in long-range correlated series [28-30], but the overall pic-
ture is far from complete.

Here, we focus on the extremal properties and return in-
tervals of stationary long-range correlated series for which
the underlying probability density function (PDF) is uniform
over a given finite interval, i.e., the X; that make up the series
{X;};=1 , are uniformly distributed. These processes are of
general interest and have been neglected in the past. For iid
random variables, a single parameter family of distributions
describes the possible limiting distribution for the maximum
of a sample [31]. This family is traditionally broken up into
three qualitatively different distributions: Fréchet, Gumbel,
and Weibull. Provided certain conditions are met, a given
underlying PDF for the iid random variables will fall within
the domain of attraction of one of these three extreme value
distributions. Previous studies have concentrated on time se-
ries with underlying PDF that belong to the Gumbel or
Fréchet domains of attraction. Random variables distributed
uniformly on [0,1], however, belong to the Weibull domain
of attraction [32]. In fact, the same is true for a series of
stationary long-range correlated uniform deviates, provided
certain mixing criteria are met [10,11]. However, we show in
this paper that a variety of extremal quantities converge to
very different limiting distributions. When the maximum is
measured relative to a quantity that is itself a random vari-
able, the extremal distribution need no longer be Gumbel,
Fréchet, or Weibull. In this paper we consider the following
three extremal quantities: (a) maximum relative to the aver-
age (over the X;), introduced in the context of interfaces [33],
(b) maximum relative to the initial value [19,34], which is a
natural measure in the context of time series (e.g., the maxi-
mum increase in a stock from its starting price), and (c)
maximum relative to minimum, which is a measure of the
full range of values encountered (e.g., as measured in auroral
indices [35]).

The structure of the paper is as follows: In Sec. II we
present analytic results for extremal distributions for iid ran-
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dom variables and we briefly discuss how our results may be
generalized to other distributions belonging to the Weibull
class, e.g., the beta distribution. In Sec. III, we then compare
the iid results to the respective distributions in stationary
long-range correlated series. In Sec. IV we present the cor-
responding return interval distributions and examine their
asymptotic behavior. We conclude the paper in Sec. V. In the
Appendix, we discuss some of the features of the Schreiber-
Schmitz algorithm [36,37] for generating long-range corre-
lated series with a specified underlying PDF.

II. EXTREMAL STATISTICS FOR IID UNIFORM
DEVIATES

Consider a set of n iid random variables {X;,...,X,}
drawn from the (cumulative) distribution function F(z). The
distribution of the maximum M, is

Pr(M,<7)=Pr(X,=z,....X,=2)=F'(2). (1)

A fundamental result of extreme value theory is that if
F"(a,z+b,) converges to a nondegenerate limiting distribu-
tion as n— %, where a,, and b,, are scale and location param-
eters, respectively, that effect a linear rescaling, the distribu-
tion can be one of only three types. The eventual limiting
distribution is determined by the asymptotic behavior of the
underlying F(z) [31]. For the specific example of n iid uni-
form deviates with probability density p(z)=1 for 0=z=1,
the choice a,=1/n, b,=1 gives

lim F'(z/n+1)=lim (z/n+1)"=¢€°, (2)
which is an example of a Weibull distribution. While the
choice of a, and b, is not unique, the particular choice does
not influence the functional form of the limiting distribution
according to the Khinchin theorem [10]. It does, however,
determine convergence rates [38]. In th:[ﬁper we choose a,,
and b,, so that all limiting PDFs p(y)= are standardized
with zero mean (via the location parameter) and unit stan-
dard deviation (via the scale parameter), where y:=a,z+b,,.
That is,

f zdF"(a,z +b,) =0, (3)
f ZdF"(a,z +b,) = 1. (4)

A. Maximum relative to average

Labeling the maximum as x,"™*, the maximum relative to

the average is defined as z:= max—-E” _,X;. By the central
limit theorem, the average of n iid umform deviates ap-
proaches a Gaussian distribution centered at 1/2 with a width
that shrinks as O(n~"?). The choice of a,=1/n in Eq. (2)
shows that the maximum approaches 1 as an exponential
distribution with a width that shrinks as O(n~"). The scaling
of a, is, to leading order, generic up to prefactors [10].
Therefore, as n— oo, the spread in the average dominates,
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and the PDF of the maximum relative to the average is

p(y) = ér e, (5)

with zero mean and unit standard deviation.

B. Maximum relative to initial value

Given an initial value x;, the maximum relative to the
initial value is defined as z:=x,"*—x,. The initial value is a
random variable with a distribution having a width of O(1).
Therefore, by the same argument as above, only the spread in
the initial value is observed for n— 0. Specifically, two situ-
ations must be distinguished. With probability 1/n, the initial
value is itself the maximum, yielding a zero maximum rela-
tive to the initial value. Thus the distribution is composed of
a point mass of weight 1/n at z=0. For z>0, the probability
distribution is continuous and the calculation of the probabil-
ity density is as follows: without loss of generality, label
from among the remaining (n—1) random variables the
maximum as the final one. Then

X}l X}l 1
p(z)=(n—1)f dxl"'f dxn_lf dx,
0 0 0

XIT 6Ge) o1 - x) o[z - (x, —x)]=1-2"", (6)
i=1

where (n—1) is a combinatorial factor taking into account all
possible locations of the maximum among the remaining
(n—1) random variables.

Substituting the PDF in Eq. (6) into Egs. (3) and (4), the
location and scale parameters that maintain zero mean and
unit standard deviation are

1 n 1

b,=— +0(n? 7

s )2 2 O ™
/— —
V313

- 2L o0, 8

4= =T 00™) ®

Thus, to leading order, the location and scale parameters are
simply the mean and standard deviation of the uniform dis-
tribution. As n— o the rescaled PDF of the maximum rela-
tive to the initial value converges to

— ~ ~
V3/6, —3/N3=y=3/\3
P ={ )

0, otherwise.

For more general cases, see [19].

C. Maximum relative to minimum

Without loss of generality, labeling the minimum and the
maximum as the first and last random variables, respectively,
the distribution of the maximum relative to the minimum, z
i=x,—X; is given by
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X X, X,y 1
P(Z) = n(n - 1)f dxlf d)C2 T f dxn—lJ dxn
0 X1 X1 0

11 6e) 61 —x) oLz~ (3, = x)]

=n(n-1)z7"2(1-7), (10)

where n(n—1) is a combinatorial factor taking into account
all possible locations of the maximum and the minimum
among the n variables.

Substituting the PDF in Eq. (10) into Egs. (3) and (4) the
location and scale parameters that maintain zero mean and
unit standard deviation are

-1 2
b= =1-2 400D, (11)
n+1 n
E
ay= =+ 0(n™). (12)
n

To leading order, the location parameter reflects the fact that
the distribution centers at z=1 from below as n— . Mean-
while, the scale parameter reflects the fact that the width of
the distribution shrinks as O(n™!) to leading order. As n
— oo the rescaled PDF of the maximum relative to the initial
value converges to

P =\22-\2p)e P2 —w<y=\2, (13)

and zero otherwise.

D. Other distributions belonging to the Weibull class

While the results given in Secs. II A-II C are for the uni-
form distribution, the arguments used in their derivation can
be easily generalized to any other distribution. Namely, the
widths under rescaling of the maximum and the reference
value should be compared in order to determine the final
limiting distribution for the extremal statistic. Generally, ei-
ther one or the other will dominate, apart from the special
case when both widths are rescaled in the same way, in
which case there will be a convolution of the two distribu-
tions (assuming that the n-independent prefactors are compa-
rable in magnitude). This is in particular true for another
prominent example in the Weibull class, the beta distribution,
with PDF

Zy—l(l _Z)é—l o
p(2)= Bpe ° U=iF 1, (14)
and zero otherwise, where y,5>0 and B(y,d) is the beta
function. The maxima of the beta distribution are Weibull
distributed, provided the width is rescaled with a,~n""°.
Thus, for example, the maximum measured with respect to
the average yields a Gaussian, a convolution, and a Weibull
distribution for 6<<2, 6=2, and 6> 2, respectively.
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III. EXTREMAL STATISTICS FOR STATIONARY
LONG-RANGE CORRELATED SIGNALS

The stationary long-range correlated series X; of length n
that we study have a uniform underlying PDF on [0,1] and
two-time-correlation function that decays as

Cii=(XX;) = (X XX)) ~ li - j[~1=, (15)

where the average corresponds to an ensemble average. Sta-
tionarity requires that «<<1 and long-range correlations are
those for which 0 <« <<1. By the Wiener-Khinchin theorem,
the Fourier transform of the two-time-correlation function is
simply the power spectrum and both are equivalent descrip-
tions. For stationary long-range correlated series, it follows
that the power spectrum decays as 1/f®.

In order to generate series of long-range correlated uni-
form deviates, we employ the algorithm of Schreiber and
Schmitz [36,37]. The method works iteratively to enforce a
desired power spectrum by permuting iid random variables
drawn from a desired distribution. Each iteration consists of
two steps: adjusting the power spectrum of the random vari-
ables in Fourier space with the appropriate filter, and then
rank-order exchanging the reversed-transformed variables
with the original iid random variables. Thus, the algorithm
does not change the values of the variables drawn initially,
but does change their order. For the uniform distribution,
only a small number of iterations is required for the power
spectrum to converge to the desired form—in our case, a
power law with slope —a. More details of the method are
outlined in the Appendix.

The statistics for the extremal quantities are collected in
segments. Typically, we generated series of length 2'° to 222,
cut up 27 to 2'° times to produce blocks of length 2! to 213,
The process is repeated for a number of generated series to
produce histograms with O(10°~107) points. The histograms
are normalized and rescaled to give p(y), with zero mean and
unit standard deviation.

As mentioned in the introduction, the three classes of ex-
treme distributions for the maxima of iid random variables
remain robust for a wide class of dependent series [10], in-
cluding, for example, long-range correlated Gaussian series
[39]. Numerically, we find that this is also true for the long-
range correlated uniform processes defined above. This sug-
gests that the relevant mixing conditions are satisfied for the
case of long-range correlated uniform deviates, although we
have not checked this analytically [40]. Moreover, while
there are strong finite-size corrections to the variation in the
scale parameter a, with n, even the asymptotic behavior or
leading-order scaling is identical to the iid case, a,=1/n. Our
numerics indicate that for small system sizes the higher-order
corrections are positive. Such a behavior is not generally
expected since, owing to correlations, the leading-order scal-
ing of a, may be different than those in the iid case [10]. In
the following, we show that analogous results hold for the
three relative maxima, i.e., the distributions derived in Egs.
(5), (9), and (13) for iid random variables also apply to the
dependent case.
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FIG. 1. (Color online) Distribution of maximum relative to av-
erage for sequences of length 2'1,2'3,215 (triangles, crosses, dia-
monds) and a=0.5, with zero mean and unit standard deviation. A
Gaussian is plotted alongside as a solid line.

A. Maximum relative to average

Figure 1 plots the maximum relative to the average for
blocks of length 2'1,213 215 (triangles, crosses, diamonds)
and @=0.5. The curves are barely distinguishable from the
iid-limiting Gaussian distribution, and the convergence is
rapid for the system sizes examined. Numerically, we find
that the same holds for 0= a <1 (not shown). These results
are expected since the width of the limiting Gaussian distri-
bution of the average decays as n'®"/? [41,42] while the
width of the distribution of the maximum decays asymptoti-
cally as n~! as mentioned above. Thus, the average domi-
nates for any «, implying that a Gaussian distribution is ob-
served asymptotically.

B. Maximum relative to initial value

Figure 2 plots the maximum relative to the initial value
for blocks of length 2'!,2!3,2!5 (triangles, crosses, dia-
monds) and a=0.5. The curves closely follow a straight hori-
zontal line of height \5'3/ 6. We find the same behavior for
other a with 0=a <1 (not shown). If we assume that the
distribution approaches the same limit as in the iid case, then
the exact form for finite n is given by Eq. (6). The function
approaches zero at its upper end point very rapidly, and this
feature is also observed in Fig. 2 for the dependent case.
Since the distribution consists of a point mass at zero maxi-
mum relative to the initial value, it is particularly convenient
to analyze this behavior with increasing «. Figure 3 demon-
strates that the fraction p of times when the initial value is
also the maximum decreases as 1/n. However, the amplitude
of the decay increases with «. An intuitive explanation for
this behavior is as follows: persistence along the series in-
creases with a, i.e., the series has memory and is more likely
to continue in the same direction as previously. A series that
starts with a downward trend is more likely to produce a zero
maximum relative to the initial value. Such persistent trajec-
tories are more prevalent with increasing «, and therefore the
amplitude of the point mass is enhanced relative to the iid
case.
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FIG. 2. (Color online) Distribution of maximum relative to ini-
tial value for sequences of length 2'1,213,215 (triangles, crosses,
diamonds) and @=0.5, with zero mean and unit standard deviation.
A uniform distribution is plotted alongside as a solid line.

In the presence of correlations, convergence to limiting
distributions is typically slower than in the iid case [43]. The
effect of increasing « (i.e., correlations) can be taken into
account by replacing the block size n by a smaller size n.
=C(a)n, where C(a)<1 is an a-dependent constant. If we
assume a similar behavior for the maximum measured rela-
tive to the minimum, then the simplest modification to Eq.
(6) for correlated series would consist of a point mass with
weight 1/(C(a)n) at zero, together with a density

p(z)=1-Clan1 (16)

for z>0. Figure 4 plots estimates of C(a) for various a,
suggesting that a decreased effective degrees of freedom de-
scription is valid.

0.001 |

100 1000
n

FIG. 3. (Color online) Decay in the fraction of zero maxima
relative to initial value with increasing system size, for «
=0.95,0.8,0.6,0.4,0.2 (top to bottom). The decay 1/n for iid series
is shown by the solid black line.
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FIG. 4. (Color online) Measurements of C(«) based on Eq. (16)
for @=02,04,0.6,0.8,0.95 (top to bottom) and n
=64,128,256,512,1024,2048. For each a, the lines are averages
over the six system sizes. Error bars are estimates of statistical error
(via standard error propagation) and represent one standard devia-
tion: over N measurements the number of instances of the maxi-
mum also being the initial value is binomially distributed with ex-
pectation Np and variance Np(1-p), where p=1/n is the
probability that the maximum lies at the initial value.

C. Maximum relative to minimum

Figure 5 plots the maximum relative to the minimum for
blocks of length 2'',2'3 215 (red, green, blue) and a=0.5.
Convergence is evidently slower for this maximal quantity
and worsens with increasing a (not shown). We speculate
that this is because the maximum and minimum approach
their respective limiting distributions at the same rate, giving
rise to the convoluted distribution derived in Eq. (10) in the
iid case.

D. Other distributions belonging to the Weibull class

For long-range correlated processes obeying the beta dis-
tribution defined in Eq. (14), the same picture emerges as

0.7 T - T T T T T

0.6 - 2, E
05 |
04 |
03 |

0.2 |

FIG. 5. (Color online) Distribution of maximum relative to
minimum for sequences of length 21,213 215 (triangles, crosses,
diamonds) and a=0.5, with zero mean and unit standard deviation.
The distribution in Eq. (13) is plotted alongside as a solid line.
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above once the relative rescalings of the maximum and the
respective reference value are taken into account. Our nu-
merics [44] indicate that the distribution of the maxima and
the minima both approach a Weibull distribution and that a,
scales asymptotically as n~"/? for the maximum and n~" for
the minimum—as in the iid case. As in the case of the uni-
form distribution, the width of the limiting Gaussian distri-
bution of the average scales as n'®""2, Thus, depending on
the particular choice of «, vy, and &, different limiting distri-
butions are obtained. For example, for y=J0=2 the extremal
statistics obey, respectively, a Gaussian, a beta distribution
with y= =2, and a convoluted distribution for the maximum
measured with respect to the average, initial value, and mini-
mum.

In general, if a given Weibull process satisfies the relevant
mixing conditions [10] and a, scales asymptotically like its
uncorrelated counterpart, then, barring slow convergence,
one of three scenarios will occur: (a) the width of the maxi-
mum distribution shrinks slower than that of the reference, in
which case the maximum distribution is observed, (b) the
width of the reference distribution shrinks slower than that of
the maximum, in which case the reference distribution is
observed, and (c) the widths of the maximum and reference
distributions scale at the same rate and are of comparable
amplitude, in which case a nontrivial convolution is ob-
served.

IV. RETURN TIMES

Return times are useful indicators for analyzing time se-
ries and are particularly relevant when forecasting extreme
events, e.g., floods or large earthquakes. For example, a flood
levee may be constructed so as to permit flooding only once
every 10 000 years, on average. Supposing that at time #; an
event of magnitude x; exceeds some threshold ¢, and that the
threshold is subsequently exceeded for the first time by an
event x; at #;, then the return time is defined as 7:=¢;—t;
Since in our context time marches in unit steps, the smallest
return time is 1, i.e., as a result of two consecutive events
that exceed the threshold.

In our simulations we generate series of length
219, ...,2%% a repeated number of times (~10? to 10°). The
return times derived from these series are then combined into
a histogram, from which we construct the normalized return
time distribution p(z).

The iid scenario is described by a Poisson point process,
giving exponentially distributed return times. For stationary
long-range correlated series, meanwhile, the authors of
[26,27] proposed the following fit-free (but nevertheless
a-dependent) ansatz for the return time distribution,

(1) = ag expl=b,(t/1)' ], (17)

where 7 is the mean return time, and a, and b, are
a-dependent constants of normalization fixed by

> p=1, (18)
=1
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FIG. 6. (Color online) Top panels: distribution of return times above the (a) 97.9%, (b) 99.7% quantile for sequences of length 29,272
(triangles, crosses) and @=0.2, with mean return times (a) 7=48, (b) 7=~287. Stretched exponential ansatzes [see Eq. (17)] are plotted
alongside for @=0.25,0.2,0.15 from top to bottom. Bottom panels: distribution of return times above the (c) 97.9%, (d) 99.7% quantile for
sequences of length 2'°,2%! (triangles, crosses) and a=0.7, with mean return times (c) 7=~48, (d) 7~287. Stretched exponential ansatzes are

plotted alongside for «=0.75,0.7,0.65 from top to bottom.

o)

X ipn)=1. (19)

=1

We test this stretched exponential ansatz for long-range cor-
related uniform deviates. Figures 6(a) and 6(b) plots numeri-
cal results for «=0.2 and two different quantiles. Stretched
exponential curves are drawn alongside for «
=0.25,0.2,0.15 from top to bottom. In Fig. 6(a) the errors
are within the symbol size up to ¢/ 7= 16, with larger statis-
tical fluctuations thereafter. For Fig. 6(b), errors remain
within symbol size up to ¢t/ 7= 13. The agreement between
the numerical results and the ansatz is poor. Increasing the
quantile worsens the agreement. For the results shown, there
appears to be no systematic trend toward the ansatz with
increasing system size. Figures 6(c) and 6(d) plot numerical
results for «=0.7 and two different quantiles. Stretched ex-
ponential curves are drawn alongside for @=0.75,0.7,0.65
from top to bottom. In Fig. 6(c) the errors are within the
symbol size up to /7= 140, with larger statistical fluctua-

tions thereafter. For Fig. 6(d), errors remain within symbol
size up to ¢t/ 7=50. The agreement between the numerical
results and the ansatz is better than at «=0.2, but still unsat-
isfactory. Increasing the quantile pushes the numerical results
further away from the «=0.7 ansatz, although there does
seem to be an improvement in the overall shape. Increasing
the system size does reveal a trend toward the ansatz curve
for @=0.7, although much larger system sizes would be re-
quired to examine whether this trend converges. A similar
picture is obtained for the beta distribution [44], i.e., poor
agreement between numerics and ansatz that worsens with
increasing quantile.

These observations are confirmed by plotting
i

»log[7p(t)/a,] against t/7. If the proposed form of a
stretched exponential is correct, then the numerical curves
should approach a constant asymptotically [26]. The main
plots in Figs. 7 and 8 show the results for «=0.2,0.7. The
numerical curves bend around the horizontal line, suggesting
that a stretched exponential is too simplistic to describe the
functional form of the asymptote. We find that the agreement
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FIG. 7. (Color online) Main plot: distribution of return times
above the 99.7% quantile for sequences of lengths 2!'%,2%! (tri-
angles, crosses) for a=0.2. Inset: distribution of return times above
the 99.1%, 99.7% quantiles (triangles, crosses) for sequences of
length 22! and @=0.2. A power law with slope —a is plotted
alongside.

with the ansatz improves with increasing «. For the most
part, the dependence on series length is weak for the series
we considered.

The particularly strong deviations from the proposed
stretched exponential given in Eq. (17) for <7 have also
been observed for other stationary long-range correlated se-
ries [27]. The authors conjecture that instead the initial as-
ymptote rather follows a power law with slope —a. We test
this hypothesis in the insets of Figs. 7 and 8 for «=0.2,0.7,
respectively. The agreement with the power-law ansatz is
reasonable and improves with decreasing « and increasing
quantile.

To summarize, while it is still possible that the ansatz for
the return time distribution of stationary long-range corre-
lated series given in Eq. (17) generally holds for > 7 in the

T T T T
1
%ﬁé

= " 100

3 &

= 10f

=

s 2 —

= = 1

= s
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o8 0.01 |
~ A
lﬂ/ X
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0001  0.01 0.1 1 10
t/T
01 1 1 1 1
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FIG. 8. (Color online) Main plot: distribution of return times
above the 99.7% quantile for sequences of lengths 2!% 22! (tri-
angles, crosses) for a=0.7. Inset: distribution of return times above
the 99.1%, 99.7% quantiles (triangles, crosses) for sequences of
length 22! and @=0.7. A power law with slope —a is plotted
alongside.
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limit of infinitely long time series, there are significant de-
viations from it for the long but finite time series considered
here. These deviations also depend on the threshold in a
counterintuitive way such that the deviations are stronger for
higher thresholds.

V. CONCLUSION

Long-range correlated series with an underlying distribu-
tion belonging to the Weibull class of extreme values have
received little attention in the literature. We believe that our
study will be of relevance to certain quantities that approach
finite bounds sufficiently slowly (for a precise mathematical
statement, see [31]). Possible examples include humidity
[45], strength of materials [46], and critical path analysis
[47]. In the latter case, the beta distribution is often used for
modeling completion times of activities.

While in the mathematical literature one can find impor-
tant extensions of iid extreme value statistics to stationary
dependent series [10,11], we have focused on extremal quan-
tities that are measured with respect to a reference point that
is itself a random variable. Apart from the mathematical in-
terest, this is motivated by practical applications. To pick just
one of the examples, the maximum relative to the minimum
gives a measure of the full range traversed by a trajectory in
a stochastic process. In many cases, the distribution of the
reference point dominates or convolves with the distribution
of the extremes, giving rise to extremal distributions very
different from the Weibull distribution. Moreover, we found
that the extremal distributions in the correlated stationary
series converge to their iid counterparts for the specific pro-
cesses considered.

While it was proposed that the form of return interval
distributions in correlated stationary series asymptotically
approaches a stretched exponential for large return intervals
independent of the underlying distribution [27], our results
for the uniform and beta distribution do not support this.
Although a stretched exponential is appealing and fully de-
termined once « has been estimated, we believe that this can
only be a first approximation. However, a power-law decay
with slope —a for short return intervals is more convincing.
Together with the results presented in Ref. [27], this suggests
that this behavior might be universal and independent of the
underlying distribution.
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APPENDIX

The numerical results presented in this article are based
on an algorithm proposed in Refs. [36,37] to generate real-
izations of stochastic processes with a desired PDF and de-
sired correlations. While the algorithm has been extensively
tested and is well established, questions remain as to the
nature of the sample paths, the step size distribution, etc. To
investigate these points, we apply the algorithm to the case
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FIG. 9. (Color online) Distribution of step sizes for series of
length 32 768 and a=2. A Gaussian and a symmetric exponential,
both with the same standard deviation as the data, have been plotted
alongside as solid lines.

of a uniform PDF with @=2, which should correspond to a
diffusionlike process. This is indeed what we find.

In Fig. 9 we plot the distribution of the step sizes between
successive points in series of length 32 768 and a=2. The
distribution lies somewhere between a Gaussian and a sym-
metric exponential, i.e., distributions with suppressed tails
(as opposed to, say, power-law tails arising from an underly-
ing Lévy motion).

To minimize the effect of the finite support of the uniform
distribution, we also studied the time evolution of those re-
alizations or series beginning in the middle of the interval.
The inset of Fig. 10 plots the standard deviation of the dis-
tribution of these series as a function of time. Numerically,
among our ensemble of series we included all those that
began with values in the narrow interval 0.475=x=0.525.
Since the random variables are drawn from a uniform distri-
bution, at time #=0 their distribution has standard deviation
o-(t=0)=\s’,§/ 120, which is indicated by the lower horizontal
line. For intermediate times the distribution spreads with a
standard deviation ()« . For long times the distribution
crosses over to a uniform spread across the interval, as indi-
cated by the upper horizontal line with standard deviation
o(t—°)=13/6. This is consistent with diffusion. However,

PHYSICAL REVIEW E 79, 041131 (2009)

FIG. 10. (Color online) Time evolution of the PDF for se-
quences initially starting within 0.475=x=10.525 after 25, 100, 500
steps (top to bottom), for L=32 768 and a=2. Gaussians with the
same standard deviation as the data are plotted alongside. Inset:
Time evolution of the standard deviation of the PDF (crosses) for
sequences initially starting within 0.475=x=0.525. The standard
deviations of the initial and final uniform distributions are V3/120
and \3/6 (horizontal lines), respectively. For a range of intermedi-
ate times the standard deviation grows with the square root of the
number of steps (diagonal line).

an idiosyncrasy of the Schreiber-Schmitz method is that the
possible values encountered in the series are quenched at
time #=0. Therefore, preselected realizations starting in the
middle narrow interval exhaust a fraction of the uniform de-
viates from this region of the [0,1] interval and, correspond-
ingly, a relatively larger amount of values is subsequently
encountered around the end points. This is the reason for the
overshoot of the standard deviation past the upper horizontal
line since the distribution is slightly enhanced at its end
points (and slightly diminished around 0.5) with respect to a
uniform distribution. But after all the values in the series
have been accounted for, the distribution of the original uni-
form draw is recovered. Figure 10 illustrates that for inter-
mediate times, the evolving distributions are well approxi-
mated by Gaussians, as expected for diffusion.
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